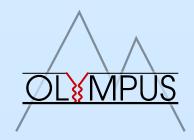
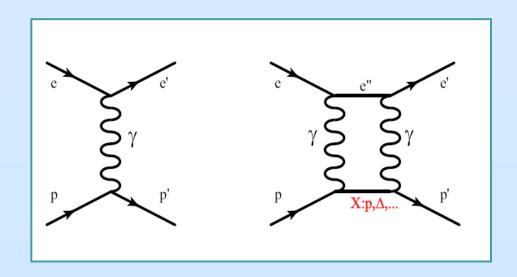
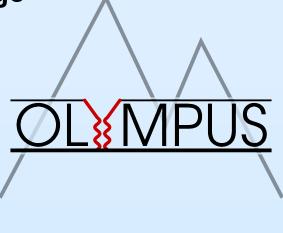
The OLYMPUS Experiment at DESY

Michael Kohl

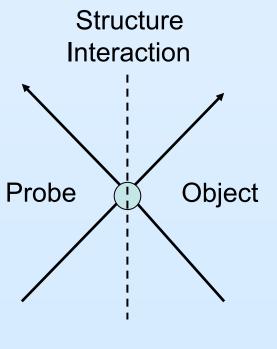
Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606



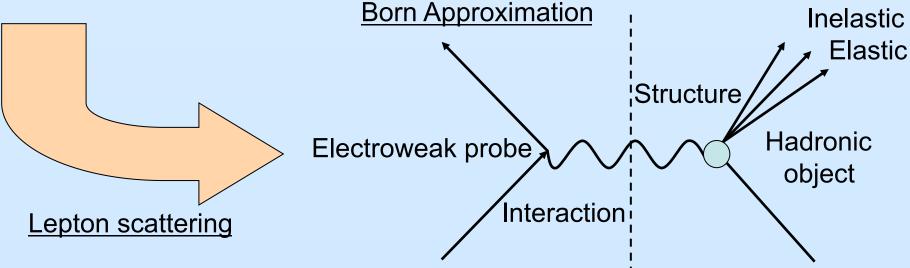

^{*} Supported by NSF grants PHY-0855473 and 0959521, and DOE Early Career Award DE-SC0003884


The OLYMPUS Experiment

- Review of the physics case two-photon exchange
- The limit of one-photon exchange:
 - What is $G_F^p(Q^2) \Leftrightarrow$ proton charge distribution?
 - What is the nature of lepton scattering?



Hadronic Structure and EW Interaction

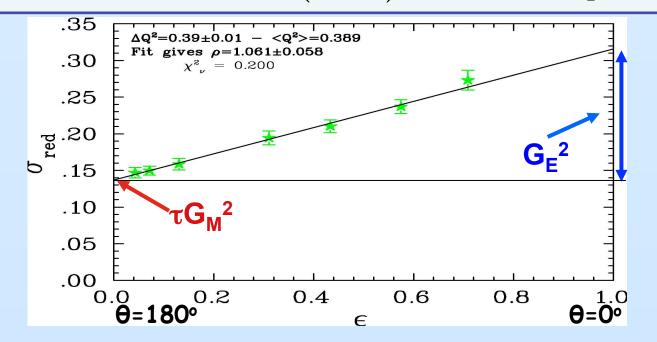


Factorization!

|Form factor|² =
$$\frac{\sigma(\text{structured object})}{\sigma(\text{pointlike object})}$$

→ Interference!

→ Utilize spin dependence of electromagnetic interaction to achieve high precision


One-Photon Exchange Approximation

3

Form Factors from Rosenbluth Method

In One-photon exchange approximation, elastic form factors are observables of elastic electron-nucleon scattering

$$egin{aligned} rac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} &= S_0 = A(Q^2) + B(Q^2) an^2 rac{ heta}{2} \ &= rac{G_E^2(Q^2) + au G_M^2(Q^2)}{1+ au} + 2 au G_M^2(Q^2) an^2 rac{ heta}{2} \ &= rac{\epsilon \, G_E^2 + au G_M^2}{\epsilon \, (1+ au)}, \qquad \epsilon = \left[1 + 2(1+ au) an^2 rac{ heta}{2}
ight]^{-1} \end{aligned}$$

$$\sigma_{\text{red}} = \varepsilon G_{\text{E}}^2 + \tau G_{\text{M}}^2$$

→ Determine

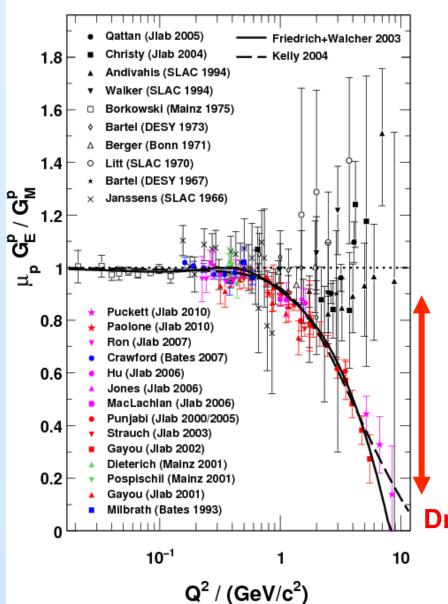
$$|G_E|, |G_M|,$$

 $|G_E/G_M|$

Nucleon Form Factors and Polarization

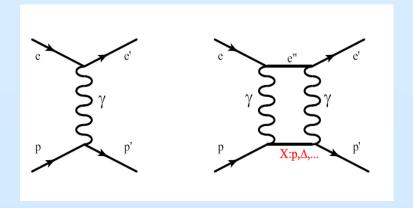
■ Double polarization in elastic ep scattering: Recoil polarization or (vector) polarized target ¹H(e,e'p), ¹H(e,e'p)

Polarized cross section


$$\sigma = \sigma_0 \left(1 + P_e \, ec{P_p} {\cdot} ec{A}
ight)$$

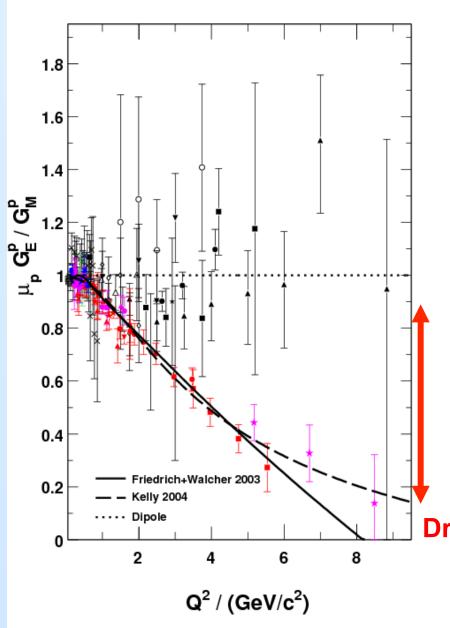
Double spin asymmetry = spin correlation

$$-\sigma_0 \vec{P_p} \cdot \vec{A} = \sqrt{2\tau\epsilon(1-\epsilon)} G_E G_M \sin \theta^* \cos \phi^* + \tau \sqrt{1-\epsilon^2} G_M^2 \cos \theta^*$$

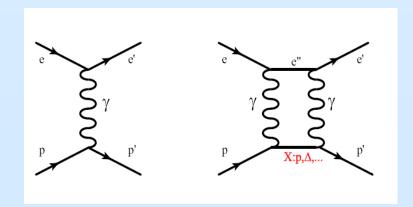

Asymmetry ratio ("Super ratio") $\frac{P_\perp}{P_\parallel} = \frac{A_\perp}{A_\parallel} \propto \frac{G_E}{G_M}$ independent of polarization or analyzing power

Proton Form Factor Ratio

Jefferson Lab 2000-


- All Rosenbluth data from SLAC and Jlab in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
- Multi-photon exchange considered best candidate

Dramatic discrepancy!

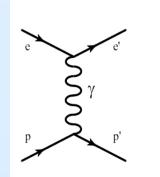

>800 citations

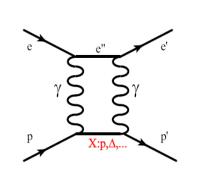
Proton Form Factor Ratio

Jefferson Lab 2000-

- All Rosenbluth data from SLAC and Jlab in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
- Multi-photon exchange considered best candidate

Dramatic discrepancy!


>800 citations


Two-Photon Exchange: Exp. Evidence

Two-photon exchange theoretically suggested

TPE can explain form factor discrepancy

J. Arrington, W. Melnitchouk, J.A. Tjon, Phys. Rev. C 76 (2007) 035205

Observables involving real part of TPE

$$P_{t} = -\sqrt{\frac{2\varepsilon(1-\varepsilon)}{\tau}} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ R + \frac{\Re\left(\delta \tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta \tilde{G}_{E}\right)}{G_{M}} + Y_{2\gamma} \right\}$$

$$P_{t} = \sqrt{(1+\varepsilon)(1-\varepsilon)} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ 1 + 2 \frac{\Re(\delta \tilde{G}_{M})}{G_{M}} + \frac{2}{1+\varepsilon} \varepsilon Y_{2\gamma} \right\}$$

$$= \frac{P_{t}}{P_{t}} = -\sqrt{\frac{2\varepsilon}{(1+\varepsilon)\tau}} \left\{ R - \frac{\Re\left(\delta \tilde{G}_{M}\right)}{G_{M}} + \frac{\Re\left(\delta \tilde{G}_{E}\right)}{G_{M}} + 2\left(1-R\frac{2\varepsilon}{1+\varepsilon}\right) Y_{2\gamma} \right\}$$

$$= \frac{e^{+/e^{-}} \times - \sec tion \ ratio}{CLAS, VEPP3, OLYMPUS}$$

$$\Re(\tilde{G}_{E}) = G_{E}\left(Q^{2}\right) + \Re\left(\delta \tilde{G}_{E}\left(Q^{2},\varepsilon\right)\right)$$

$$\Re(\tilde{G}_{M}) = G_{M}\left(Q^{2}\right) + \Re\left(\delta \tilde{G}_{M}\left(Q^{2},\varepsilon\right)\right)$$

$$\Re(\tilde{G}_{M}) = G_{M}\left(Q^{2}\right) + \frac{\Re\left(\delta \tilde{G}_{M}\right)}{2\tau} + \frac{\Re\left(\delta \tilde{G}_{E}\right)}{2\tau} + \frac{\Re\left(\delta \tilde{G}_{E}\right)}{2\tau} + \frac{2}{\tau} \frac{\Re\left(\delta \tilde{G}_{M}\right)}{\tau} + \frac{2}{\tau} \frac{2}{\tau} \frac{\Re\left(\delta \tilde{G}_{E}\right)}{\tau} + 2\left(1-R\frac{2\varepsilon}{1+\varepsilon}\right) Y_{2\gamma}$$

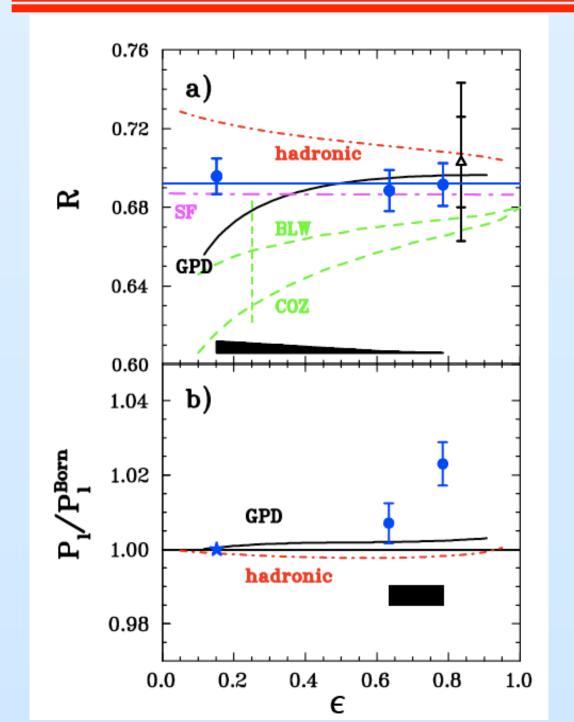
$$\Re(\tilde{G}_{M}) = G_{E}\left(Q^{2}\right) + \Re\left(\delta \tilde{G}_{E}\left(Q^{2},\varepsilon\right)\right)$$

$$\Re(\tilde{G}_{M}) = G_{M}\left(Q^{2}\right) + \frac{\Re\left(\delta \tilde{G}_{M}\right)}{1-\varepsilon} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$

$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$

$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$

$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$


$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$

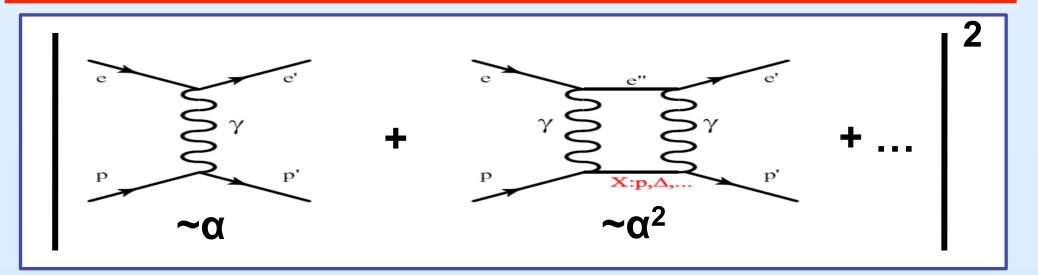
$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{\tau} \frac{\Re\left(\tilde{F}_{3}\left(Q^{2},\varepsilon\right)\right)}{3\tau}$$

$$= \frac{1-\varepsilon}{\tau} \frac{1-\varepsilon}{$$

P.A.M. Guichon and M.Vanderhaeghen, Phys.Rev.Lett. 91, 142303 (2003) M.P. Rekalo and E. Tomasi-Gustafsson, E.P.J. A 22, 331 (2004) Slide idea: L. Pentchev

Jefferson Lab E04-019 (Two-gamma)

Jlab – Hall C $Q^2 = 2.5 (GeV/c)^2$


 G_E/G_M from P_t/P_l constant vs. ϵ

- → no effect in P_t/P_t
- → some effect in P_I

Expect larger effect in e+/e-!

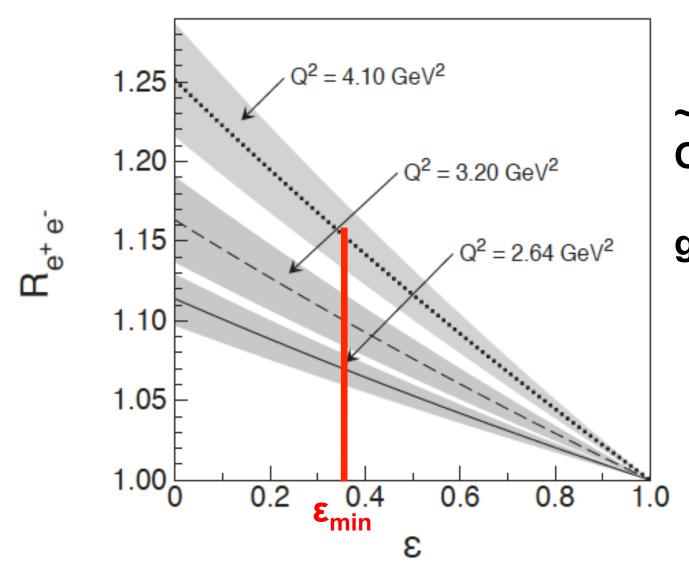
M. Meziane et al., hep-ph/1012.0339v2 Phys. Rev. Lett. 106, 132501 (2011)

Lepton-Proton Elastic Scattering

$$\sigma = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma)\alpha^3 + \dots$$

$$e^- \iff e^+ \Rightarrow \alpha \iff -\alpha$$

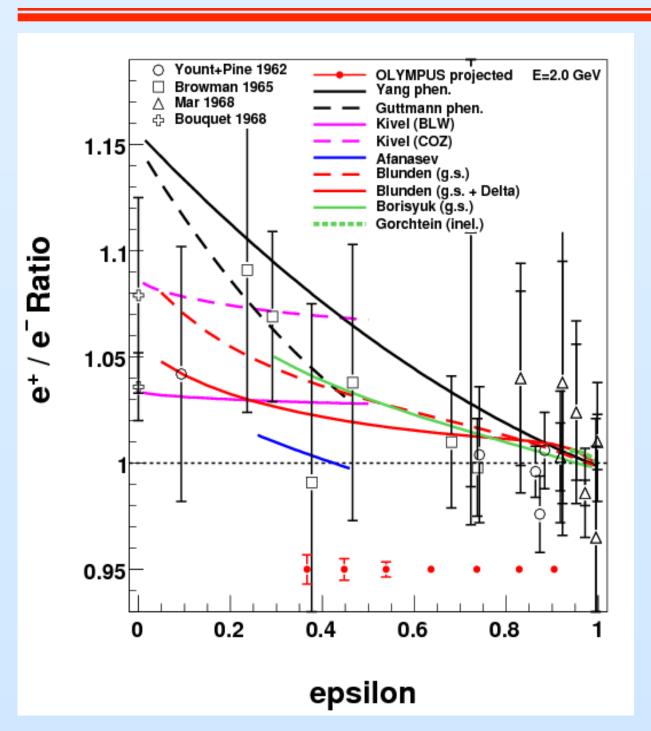
$$\sigma(\text{electron-proton}) = (1\gamma)^2 \alpha^2 - (1\gamma)(2\gamma)\alpha^3 + \dots$$

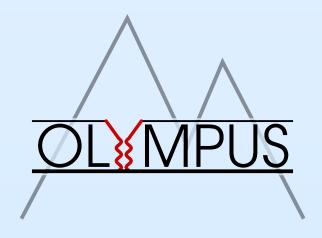

$$\sigma(\text{positron-proton}) = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma)\alpha^3 + \dots$$

$$\frac{\sigma(e^+p)}{\sigma(e^-p)} = 1 + (2\alpha)\frac{2\gamma}{1\gamma}$$

σ-ratio to deviate from 1 due to interference of 1γ and 2γ proportional to TPE

Empirical Extraction of TPE Amplitudes


J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, hep-ph/1012.0564v1

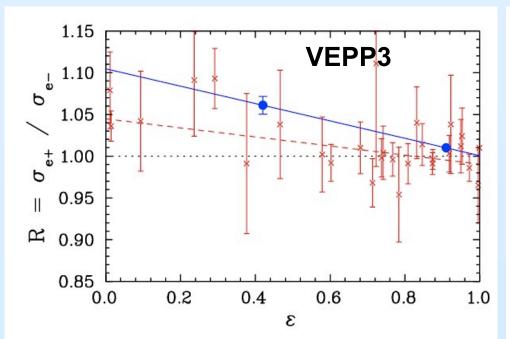


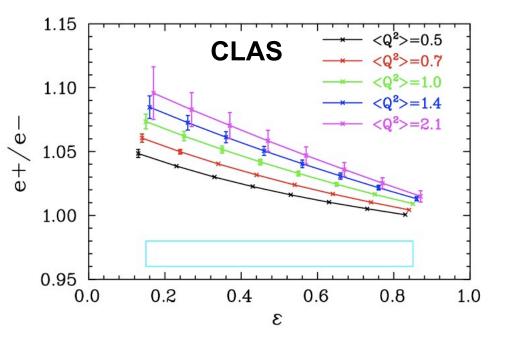
~6% effect for OLYMPUS@2.0GeV

grows with Q²!

Projected Results for OLYMPUS

Data from 1960's


Many theoretical predictions with little constraint


OLYMPUS:

E = 2 GeV, ε = 0.37-0.9 Q² = 0.6-2.2 (GeV/c)² <1% projected uncertainties 500h @ 2x10³³ / cm²s e+,e-

to be run in 2012

Other Experiments to Verify TPE

Experiment proposals to verify hypothesis:

e+/e- ratio: CLAS/PR04-116

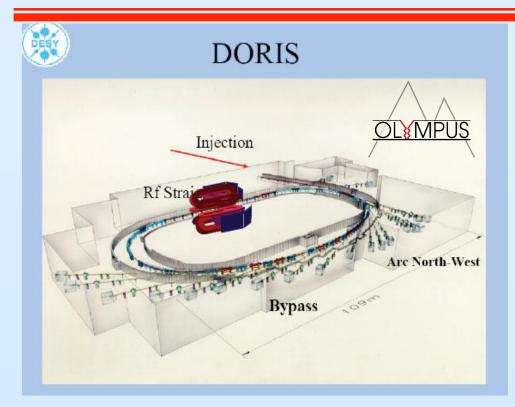
secondary e+/e- beam/ext. target – 2010/11 (completed in Feb. 2011)

Novosibirsk/VEPP-3

storage ring / intern. target - 2009

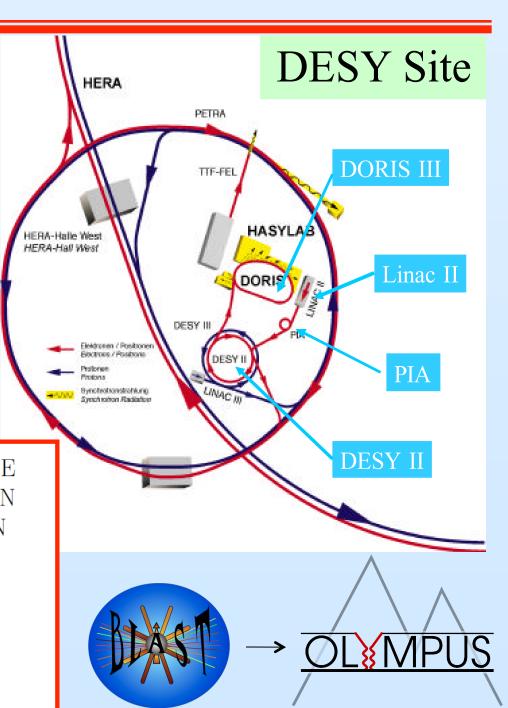
(preliminary result: sizable effect)

OLYMPUS@DESY


storage ring / intern. target - 2012

SSA: PR05-15 (Hall A, trans. pol target); MAMI-A4 (trans. pol. beam) ε-dependence: PR04-019 (polarized), PR05-017 (unpolarized)

OLYMPUS @ DESY


OLYMPUS @ **DESY**

A PROPOSAL TO DEFINITIVELY DETERMINE
THE CONTRIBUTION OF MULTIPLE PHOTON
EXCHANGE IN ELASTIC LEPTON-NUCLEON
SCATTERING

THE OLYMPUS COLLABORATION

September 9, 2008

OLYMPUS @ **DESY**

pOsitron-proton and

eLectron-proton elastic scattering to test the

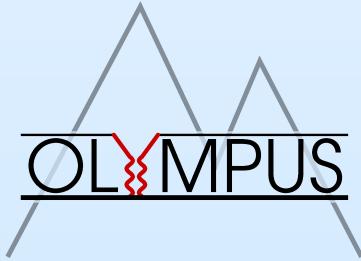
hYpothesis of

Multi-

Photon exchange

Using

DoriS


2007 - Letter of Intent

2008 – Full proposal

2009/10 – Funding and Approval

2010/11 – Transfer of BLAST detector Installation and commissioning

2012 - OLYMPUS Running

Proposed Experiment

- Electrons/positrons (100mA) in multi-GeV storage ring DORIS at DESY, Hamburg, Germany
- Unpolarized internal hydrogen target (buffer system) $3x10^{15}$ at/cm² @ 100 mA \rightarrow L = $2x10^{33}$ / (cm²s)
- Large acceptance detector for e-p in coincidence BLAST detector from MIT-Bates available
- Redundant monitoring of luminosity
 Pressure, temperature, flow, current measurements
 Small-angle elastic scattering at high epsilon / low Q²
 Symmetric Moller/Bhabha scattering
- Measure ratio of positron-proton to electron-proton unpolarized elastic scattering to 1% stat.+sys.

Collaboration Organization

- Nov 2006 Idea first formulated (D. Hasell, M.K., R. Milner)
- Jun 2007 Letter of Intent
- Sept 2008 Full Proposal
- Technical review Sept 2009, funded and officially approved since Jan 2010
- Several collaboration meetings since technical review

Nov 30-Dec 1, 2009 Feb

Feb 23–24, 2010

Apr 26-27, 2010

Jun 28–29, 2010

Aug 30–31, 2010

Nov 1–2, 2010

Jan 24 – 25, 2011

■ Elected management of OLYMPUS at Dec 2009 meeting:

Spokesman: Richard Milner (MIT)

Deputy spokesman: Reinhard Beck (U. Bonn)

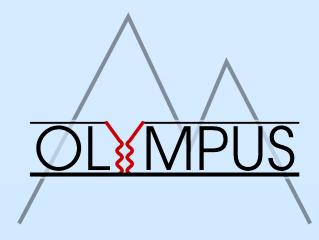
Technical coordinator: Douglas Hasell (MIT)

Project manager: Uwe Schneekloth (DESY)

Appointed coordinators:

Tracking - D. Hasell (MIT)

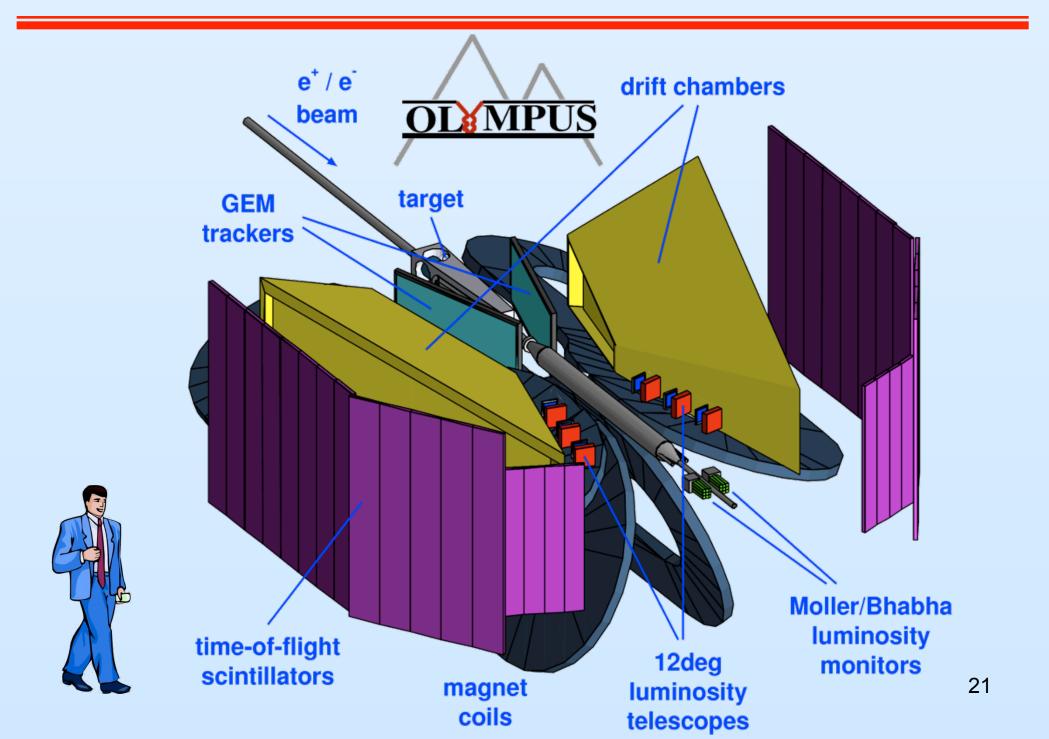
Scintillators – I. Lehmann (U. Glasgow)


Luminosity Monitor – M. Kohl (Hampton U.)

Symmetric Moller Monitor – F. Maas (U. Mainz)

Target – R. Milner (MIT)

Data Acquisition – C. Funke (U. Bonn)


Slow Controls – A. Izotov (PNPI)

Institutional Responsibilities

- Arizona State University: TOF support, particle identification, magnetic shielding
- **DESY:** Modifications to DORIS accelerator and beamline, toroid support, infrastructure, installation
- **Hampton University:** GEM luminosity monitor, simulations
- INFN Bari: GEM electronics
- INFN Ferrara: Target
- INFN Rome: GEM electronics
- MIT: BLAST spectrometer, wire chambers, tracking upgrade, target and vacuum system, transportation to DESY, simulations
- Petersburg Nuclear Physics Institute: Slow controls, MWPC luminosity monitor
- University of Bonn: Trigger and data acquisition
- University of Glasgow: Particle Identification, TOF scintillators
- University of Kentucky: Simulations
- University of Mainz: Trigger, DAQ, Symmetric Moller monitor
- University of New Hampshire: TOF scintillators
- Yerevan Physics Institute: Removal of ARGUS, TOF system

The Proposed OLYMPUS Detector

Preparation of OLYMPUS

Transfer of detector

- ARGUS removed; BLAST disassembled and shipped (May-July 2010)
- OLYMPUS assembly at DESY started in June 2010, complete by August 2011

■ Target and vacuum system

- New target chamber designed, machined from solid aluminum
- Target cells constructed by INFN Ferrara
- Control system development started in May 2010
- Contructed and tested by Nov. 2010, shipped and installed in Jan. 2011
- Test experiment successful in Feb. 2011; reinstall in DORIS in May 2011

Drift Chambers

Rewired drift chambers at DESY in summer 2010, to be installed May 2011

TOFs

- TOFs tested and calibrated at Bates in January 2010
- Supports redesigned, coordinated by U. Glasgow, to be installed in May 2011

Luminosity Monitoring

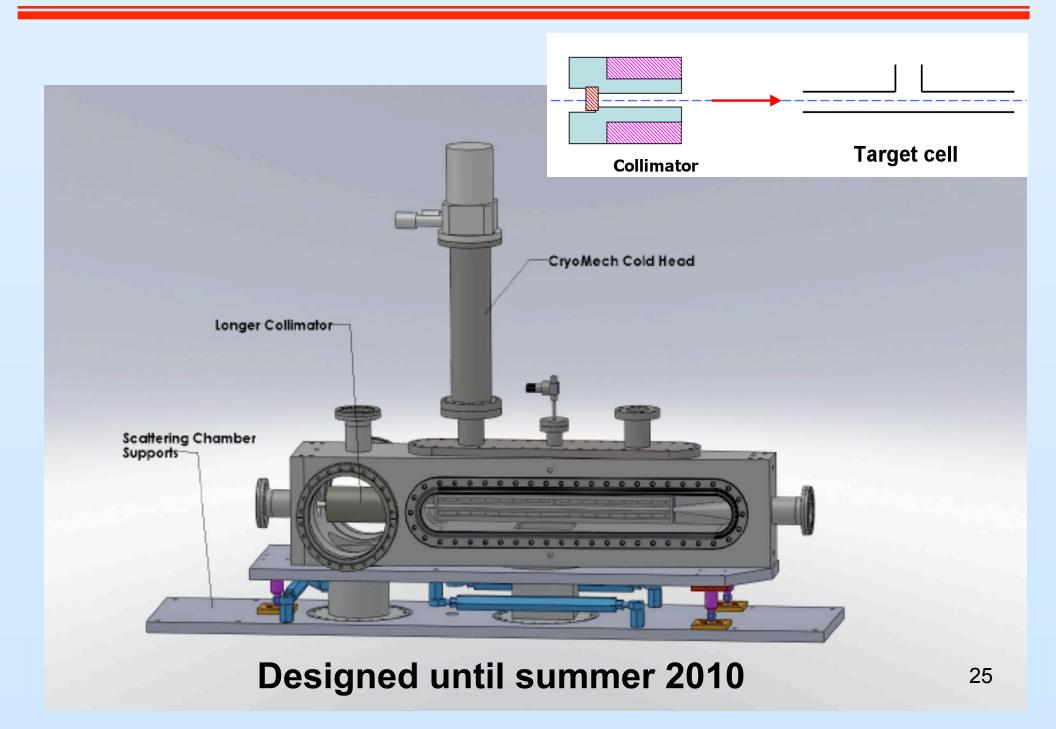
- 12-degree elastic scattering telescopes (Hampton & PNPI), well advanced
- Symmetric Moller/Bhabha monitors (U. Mainz)
- ◆ Test of all elements at DESY testbeam facility in May 2011

DAQ

U. Bonn coordinating, system brought into operation at DESY in summer 2010

"ROLLING-IN" of final OLYMPUS detector into DORIS in August 2011

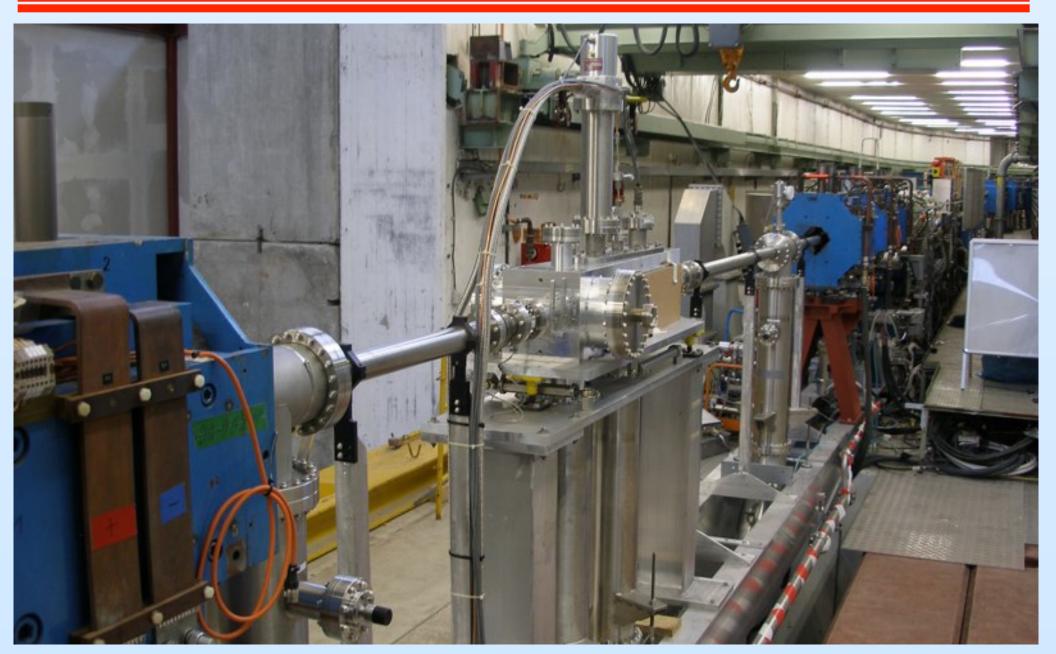
OLYMPUS: BLAST@DESY/DORIS



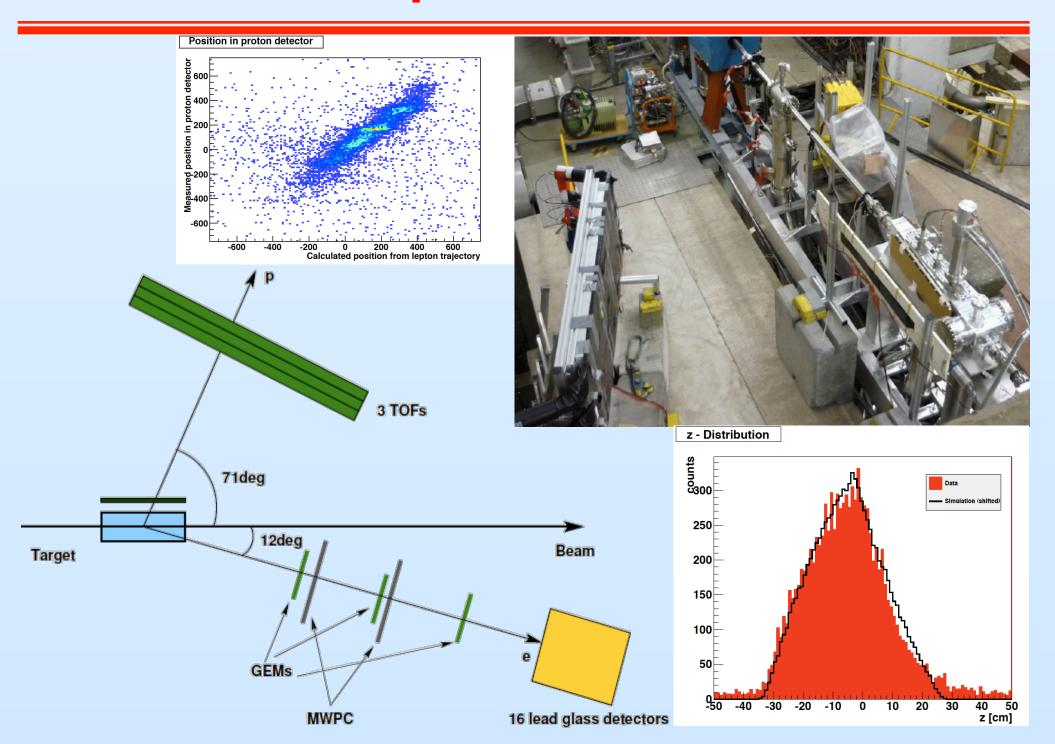
OLYMPUS: BLAST@DESY/DORIS

24

Target and Vacuum System



Target and Vacuum System

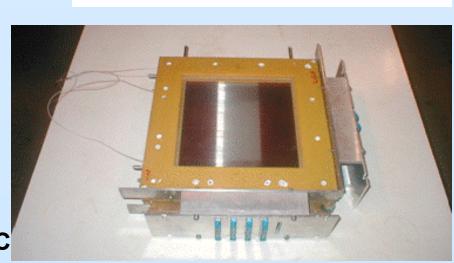

Target chamber machined by October 2010

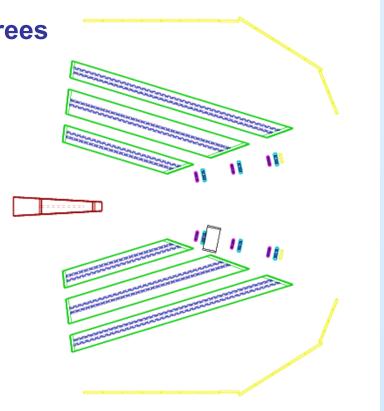
Target and Vacuum System

Installed in DORIS in January 2011

DORIS Test Experiment in Feb 2011

Luminosity Monitors: GEM + MWPC


 Forward elastic scattering of lepton at 12 degrees in coincidence with proton in main detector

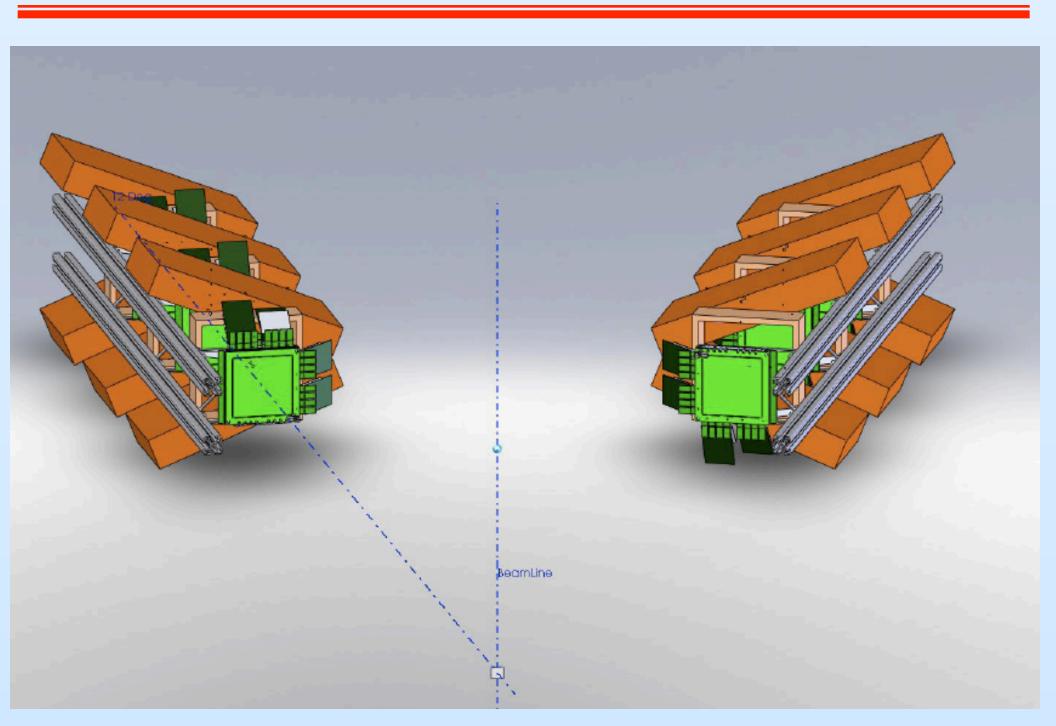

- Two GEM + MWPC telescopes with interleaved elements operated independently
- Scintillator for triggering and timing
- High redundancy alignment, efficiency
 Two independent groups (Hampton, PNPI)

Prototypes:

GEM

MWPC

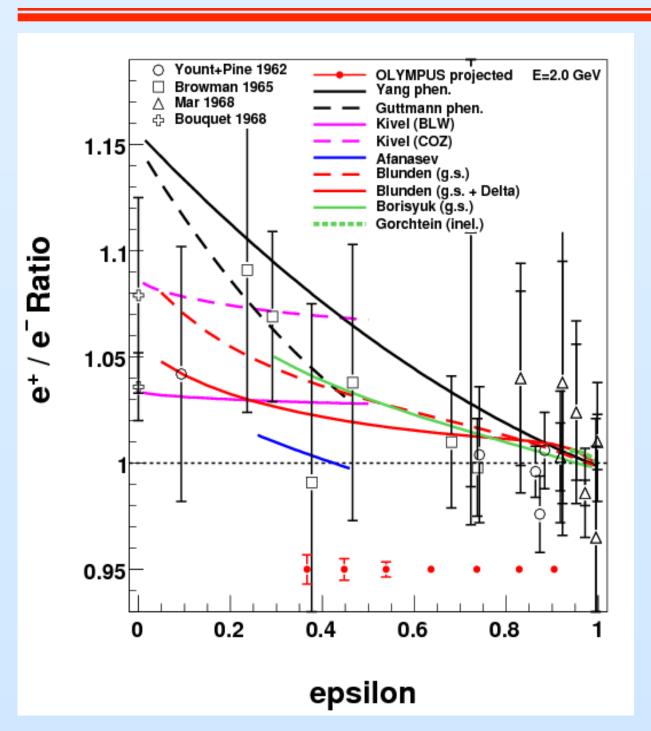
Luminosity Monitors – Basic Properties

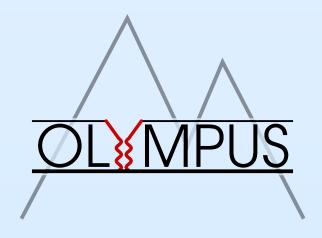

Proposed version included in OLYMPUS TDR Sept. 2009

E_0	Q^2	$p_{e'}$	ϵ	θ_p	p_p	Rate
[GeV]	$[(\mathrm{GeV/c})^2]$	$[\mathrm{GeV/c}]$			$[\mathrm{MeV/c}]$	$[h^{-1}]$
4.5	0.801	4.073	0.9736	58.7°	992	1846
2.0	0.167	1.911	0.9774	71.8°	418	49792

Table 4.1: Kinematics and count rates of the luminosity control measurement for beam energies of 2.0 and 4.5 GeV at $\theta_e = 12^{\circ}$. The assumed solid angle is 1.2 msr determined by the area of rearmost tracking plane farthest from the target.

- Two symmetric GEM telescopes at 12°
- Two-photon effect negligible at high-ε / low-Q²
- Sub-percent (relative) luminosity measurement per hour at 2.0 GeV, per day at 4.5 GeV
- 1.2 msr = $10 \times 10 \text{ cm}^2$ at $\sim 290 \text{ cm}$ distance (rearmost plane)
- Three GEM layers with ~0.1 mm resolution with ~50 cm gaps


Luminosity Monitors: GEM + MWPC



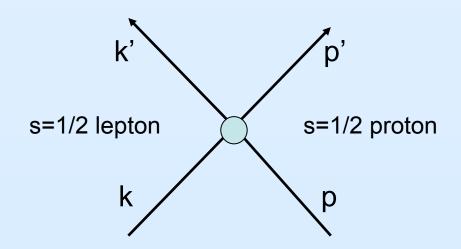
Summary

- The limits of OPE have been reached with available today's precision
 - Nucleon elastic form factors, particularly G_E^p under doubt
- The TPE hypothesis is suited to remove form factor discrepancy, however calculations of TPE are model-dependent
- Experimental probes: Real part of TPE
 - ε-dependence of polarization transfer
 - ε-nonlinearity of cross sections
 - Comparison of positron and electron scattering
- Need both positron and electron beams for a definitive test of TPE OLYMPUS, CLAS, VEPP-3
- Install OLYMPUS experiment in DORIS IR in August 2011 ("rolling-in")
- Commissioning of OLYMPUS August December 2011
- Take data in two running blocks beginning and end 2012

Projected Results for OLYMPUS

Data from 1960's

Many theoretical predictions with little constraint


OLYMPUS:

E = 2 GeV, ε = 0.37-0.9 Q² = 0.6-2.2 (GeV/c)² <1% projected uncertainties 500h @ 2x10³³ / cm²s e+,e-

to be run in 2012

Backup slides – OLYMPUS

Elastic ep Scattering Beyond OPE

$$P \equiv \frac{p+p'}{2}, \quad K \equiv \frac{k+k'}{2}$$

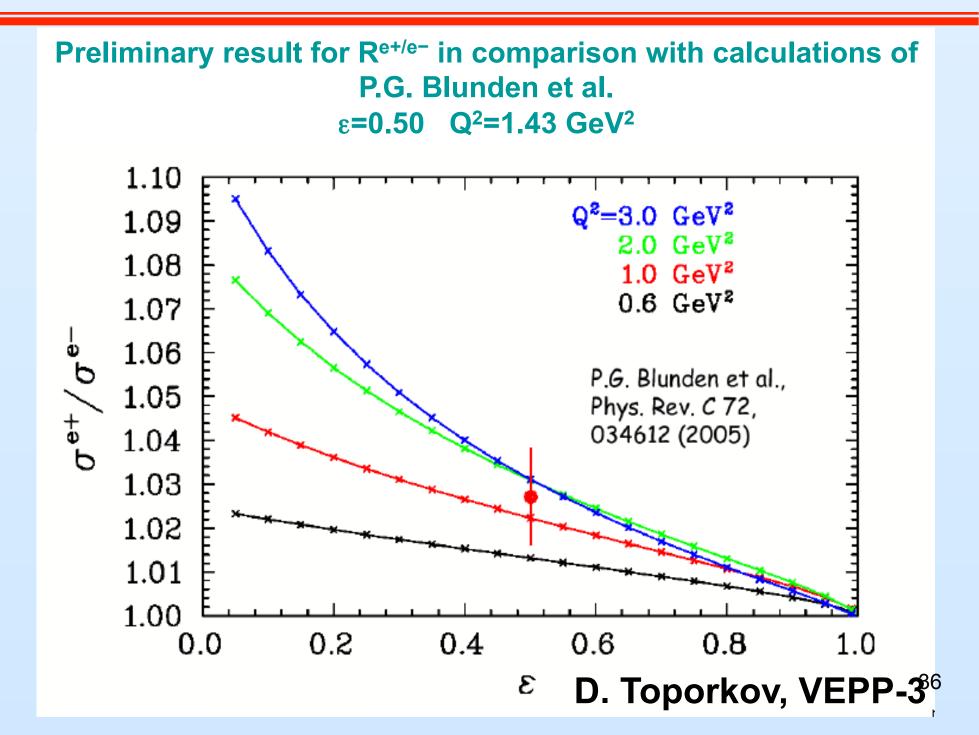
Kinematical invariants:

$$Q^{2} = -(p - p')^{2}$$

$$\nu = K \cdot P = (s - u)/4$$

Next-to Born approximation:

$$\begin{array}{lcl} T_{h'\lambda_N',h\lambda_N}^{non-flip} & = & \frac{e^2}{Q^2} \bar{u}(k',h') \gamma_\mu u(k,h) \\ & & \\ ^{(\text{m}_{\text{e}}\,=\,0)} & \times & \bar{u}(p',\lambda_N') \left(\tilde{G}_M\,\gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{\gamma.KP^\mu}{M^2}\right) u(p,\lambda_N) \end{array}$$


The T-matrix still factorizes, however a new response term F_3 is generated by TPE Born-amplitudes are modified in presence of TPE; modifications $\sim \alpha^3$

$$\begin{aligned}
\tilde{G}_{M}(\nu, Q^{2}) &= G_{M}(Q^{2}) + \delta \tilde{G}_{M} \\
\tilde{F}_{2}(\nu, Q^{2}) &= F_{2}(Q^{2}) + \delta \tilde{F}_{2} \\
\tilde{F}_{3}(\nu, Q^{2}) &= 0 + \delta \tilde{F}_{3}
\end{aligned}$$

$$egin{aligned} ilde{G}_E &\equiv ilde{G}_M - (1+ au)\, ilde{F}_2 \ ilde{G}_E(
u,Q^2) &= G_E(Q^2) + \delta ilde{G}_E \end{aligned}$$

New amplitudes are complex!

(Unofficial) Novosibirsk Information

Control of Systematics

$$N_{ij} = L_{ij} \sigma_i \kappa^p_{ij} \kappa^l_{ij}$$
 i = e+ or e-j= pos/neg polarity

Geometric proton efficiency:
$$\kappa_{\mathrm{e}^{+}j}^{p}=\kappa_{\mathrm{e}^{-}j}^{p}$$

$$rac{N_{
m e}+_j/L_{
m e}+_j}{N_{
m e}-_j/L_{
m e}-_j} = rac{\sigma_{
m e}+}{\sigma_{
m e}-} \cdot rac{\kappa_{
m e}^l+_j}{\kappa_{
m e}^l-_j}$$
 Ratio in single polarity j

Geometric lepton
$$\kappa_{\mathrm{e}^++}^l = \kappa_{\mathrm{e}^--}^l$$
 and $\kappa_{\mathrm{e}^+-}^l = \kappa_{\mathrm{e}^-+}^l$

Control of Systematics

Super ratio:

$$\left[\frac{N_{e^{+}+}/L_{e^{+}+}}{N_{e^{-}+}/L_{e^{-}+}} \cdot \frac{N_{e^{+}-}/L_{e^{+}-}}{N_{e^{-}-}/L_{e^{-}-}}\right]^{\frac{1}{2}} = \frac{\sigma_{e^{+}}}{\sigma_{e^{-}}}$$

Cycle of four states ij Repeat cycle many times

- Change between electrons and positrons every other day
- Change BLAST polarity every other day
- Left-right symmetry